Correction: Development of β-Carotene Rich Maize Hybrids through Marker-Assisted Introgression of β-carotene hydroxylase Allele
نویسندگان
چکیده
Development of vitamin A-rich cereals can help in alleviating the widespread problem of vitamin A deficiency. We report here significant enhancement of kernel β-carotene in elite maize genotypes through accelerated marker-assisted backcross breeding. A favourable allele (543 bp) of the β-carotene hydroxylase (crtRB1) gene was introgressed in the seven elite inbred parents, which were low (1.4 µg/g) in kernel β-carotene, by using a crtRB1-specific DNA marker for foreground selection. About 90% of the recurrent parent genome was recovered in the selected progenies within two backcross generations. Concentration of β-carotene among the crtRB1-introgressed inbreds varied from 8.6 to 17.5 µg/g - a maximum increase up to 12.6-fold over recurrent parent. The reconstituted hybrids developed from improved parental inbreds also showed enhanced kernel β-carotene as high as 21.7 µg/g, compared to 2.6 µg/g in the original hybrid. The reconstituted hybrids evaluated at two locations possessed similar grain yield to that of original hybrids. These β-carotene enriched high yielding hybrids can be effectively utilized in the maize biofortification programs across the globe.
منابع مشابه
Development of Biofortified Maize Hybrids through Marker-Assisted Stacking of β-Carotene Hydroxylase, Lycopene-ε-Cyclase and Opaque2 Genes
Traditional yellow maize though contains high kernel carotenoids, the concentration of provitamin A (proA) is quite low (<2 μg/g), compared to recommended level (15 μg/g). It also possesses poor endosperm protein quality due to low concentration of lysine and tryptophan. Natural variant of crtRB1 (β-carotene hydroxylase) and lcyE (lycopene-ε-cyclase) cause significant enhancement of proA concen...
متن کاملAllelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme
Vitamin A deficiency is a global health problem and can be effectively alleviated through crop biofortification. Quantification of carotenoids using highperformance liquid chromatography is expensive and time-consuming, thereby posing a challenge in the selection of genotypes with high provitamin A. Favourable alleles possessing rare genetic variation in lycopene-ε-cyclase (lcyE) and β-carotene...
متن کاملEffects of husk and harvest time on carotenoid content and acceptability of roasted fresh cobs of orange maize hybrids
Vitamin A deficiency (VAD) is a major public health problem in many developing countries. Orange maize is preferred as green maize and consumed roasted on the cob, especially in Nigeria. This research work was to evaluate the effects of harvest time and husk on the carotenoid contents and sensory properties of roasted orange maize hybrids. The results showed that husk (roasting forms) and harve...
متن کاملThe Silencing of Carotenoid β-Hydroxylases by RNA Interference in Different Maize Genetic Backgrounds Increases the β-Carotene Content of the Endosperm
Maize (Zea mays L.) is a staple food in many parts of Africa, but the endosperm generally contains low levels of the pro-vitamin A carotenoid β-carotene, leading to vitamin A deficiency disease in populations relying on cereal-based diets. However, maize endosperm does accumulate high levels of other carotenoids, including zeaxanthin, which is derived from β-carotene via two hydroxylation react...
متن کاملZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel.
α-carotene is one of the important components of pro-vitamin A, which is able to be converted into vitamin A in the human body. One maize (Zea mays L.) ortholog of carotenoid hydroxylases in Arabidopsis thaliana, ZmcrtRB3, was cloned and its role in carotenoid hydrolyzations was addressed. ZmcrtRB3 was mapped in a quantitative trait locus (QTL) cluster for carotenoid-related traits on chromosom...
متن کامل